Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

نویسندگان

  • Takahiro Shimada
  • Le Van Lich
  • Koyo Nagano
  • Jie Wang
  • Takayuki Kitamura
چکیده

Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires.

We report scanned probe characterizations of the ferroelectric phase transition in individual barium titanate (BaTiO3) nanowires. Variable-temperature electrostatic force microscopy is used to manipulate, image, and evaluate the diameter-dependent stability of ferroelectric polarizations. These measurements show that the ferroelectric phase transition temperature (TC) is depressed as the nanowi...

متن کامل

Adjustable three color optical filters using ferroelectric -dielectric generalized heterostructures photonic crystals

Abstract: The current research is aimed to investigate the alterations of its opticalfeatures of novel adjustable three color narrowband optical filters, which comprise ofblue, green and red light. A narrowband adjustable transmission optical filters accordingto dielectric- ferroelectric heterostructures photonic structures are designed using thetransfer-matrix method (T...

متن کامل

Manipulate light polarizations with metamaterials: From microwave to visible

Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the sca...

متن کامل

Manipulate light polarizations by metamaterials: from microwave to visible

In this paper, we review our recent efforts in employing anisotropic metamaterials to manipulate electromagnetic wave polarizations, including conversions between different polarization states and rotations of polarization direction, in frequency domains ranging from microwave to visible. We first present a general theoretical analysis on the problem, and then discuss our experimental efforts i...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015